```
import numpy as np
colors = np.array(["red","blue","yellow","orange"])
colors
```

OUTPUT:

`array(['red', 'blue', 'yellow', 'orange'], dtype='<U6')`

`colors[-3]`

OUTPUT:

`'blue'`

```
-5 -4 -3 -2 -1
0 1 2 3 4
a, b, c, d, e
```

```
arr = np.arange(10,20)
arr
```

OUTPUT:

`array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])`

`print("FIRST Element is ",arr[0])`

OUTPUT:

`FIRST Element is 10`

`arr[0:4]`

OUTPUT:

`array([10, 11, 12, 13])`

`print("5th to 8th elements are",arr[5:8])`

OUTPUT:

`5th to 8th elements are [15 16 17]`

```
arr = np.arange(10,20)
arr
```

OUTPUT:

`array([10,11,12,13,14,15,16,17,18,19])`

`print("with step 2 :",arr[0:9:2])`

OUTPUT:

`with step 2 : [10 12 14 16 18]`

`array[start : end : jump ] `

`print("Last element:",arr[-1])`

OUTPUT:

`Last element: 19`

`print("All the elements except the last one ",arr[0:-2])`

OUTPUT:

`All the elements except the last one [10 11 12 13 14 15 16 17]`

```
arr=np.array([1,2,3,4,5,6,7,8,9,10])
arr[0]= 99
arr
```

OUTPUT:

`array([99, 2, 3, 4, 5, 6, 7, 8, 9, 10])`

```
arr1 = np.array([1, 2, 3, 4])
print("First array:",arr1)
arr2 = arr1
print("After copying ,second array:",arr2)
arr1[0] =500
print("After changing a value in arr1")
print("arr1:",arr1)
print("arr2:",arr2)
```

OUTPUT:

```
First array: [1 2 3 4]
After copying ,second array: [1 2 3 4]
After changing a value in arr1
arr1: [500 2 3 4]
arr2: [500 2 3 4]
```

```
import numpy as np
arr1 = np.array([1, 2, 3, 4])
print("First array:",arr1)
arr2 = arr1.copy()
print("After copying ,second array:",arr2)
arr2[0] = 100
print("After changing a value in arr1")
print("arr1:",arr1)
print("arr2:",arr2)
```

OUTPUT:

`First array: [1 2 3 4]After copying ,second array: [1 2 3 4]After changing a value in arr1arr1: [1 2 3 4]arr2: [100 2 3 4]`

```
score= np.array([34,56,78,94,29,56,79])
passing_score = score > 80
score[passing_score]
```

OUTPUT:

`array([94])`

```
import numpy as np
A=np.array([4,16,36,49])
A
```

OUTPUT:

`array([ 4, 16, 36, 49])`

`np.std(A)`

OUTPUT:

`17.41228014936585`

```
arr = np.array([3.4, 5.6, 2.1, 6.9])
print(np.ceil(arr))
print(np.floor(arr))
```

OUTPUT:

```
[4. 6. 3. 7.]
[3. 5. 2. 6.]
```

```
import numpy as np
A=np.array([4,7,3,4,2,8])
print("Maximum Value:",np.max(A))
print("Mainimum Value:",np.min(A))
print("Average:",np.mean(A))
print("Square root:",np.sqrt(A))
print("Median:",np.median(A))
print("Standard Deviation:",np.std(A))
```

OUTPUT:

```
Maximum Value: 8
Mainimum Value: 2
Average: 4.666666666666667
Square root: [2. 2.64575131 1.73205081 2. 1.41421356 2.82842712]
Median: 4.0
Standard Deviation: 2.134374745810949
```

```
arr = np.array([3.4,5.6,2.1,6.9])
print("floor function")
print (np.floor(arr))
```

OUTPUT:

`floor function[3. 5. 2. 6.]`

Lesson Assignment

Challenge yourself with our lab assignment and put your skills to test.

```
# Python Program to find the area of triangle
a = 5
b = 6
c = 7
# Uncomment below to take inputs from the user
# a = float(input('Enter first side: '))
# b = float(input('Enter second side: '))
# c = float(input('Enter third side: '))
# calculate the semi-perimeter
s = (a + b + c) / 2
# calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)
```

Sign up to get access to our code lab and run this code.

Sign up Keeping up with current marketing trends

Unsubscribe any time, no hard feelings.

Trusted By Experts

"The team was thrilled with the quality of instruction provided."

~**Avinash Purohit, **DGM, Canara Bank

Enjoy AI-Powered Learning